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with understanding can modify or adapt procedures to make them easier to
use. For example, students with limited understanding of addition would
ordinarily need paper and pencil to add 598 and 647. Students with more
understanding would recognize that 598 is only 2 less than 600, so they might
add 600 and 647 and then subtract 2 from that sum.*

Strategic Competence

Strategic Strategic competence refers to the ability to formulate mathematical prob-
COMPpetence  |ems represent them, and solve them. This strand is similar to what has
refers to the A et E

ability to been called problem solving and problem formulation in the literature of

formulate Mathematics education and cognitive science, and mathematical problem
mathematical solving, in particular, has been studied extensively.”

problems, Although in school, students are often presented with clearly specified

tLeepr;es:n"; problems to solve, outside of school they encounter situations in which part
solve them. Of the difficulty is to figure out exactly what the problem is. Then they need

to formulate the problem so that they can use mathematics to solve it. Con-
sequently, they are likely to need experience and practice in problem formu-
lating as well as in problem solving. They should know a variety of solution
strategies as well as which strategies might be useful for solving a specific
problem. For example, sixth graders might be asked to pose a problem on
the topic of the school cafeteria.”” Some might ask whether the lunches are
too expensive or what the most and least favorite lunches are. Others might
ask how many trays are used or how many cartons of milk are sold. Still
others might ask how the layout of the cafeteria might be improved.

With a formulated problem in hand, the student’s first step in solving it is
to represent it mathematically in some fashion, whether numerically, sym-
bolically, verbally, or graphically. Fifth graders solving problems about getting
from home to school might describe verbally the route they take or draw a
scale map of the neighborhood. Representing a problem situation requires,
first, that the student build a mental image of its essential components. Becom-
ing strategically competent involves an avoidance of “number grabbing”
methods (in which the student selects numbers and prepares to perform arith-
metic operations on them)® in favor of methods that generate problem models
(in which the student constructs a mental model of the variables and rela-
tions described in the problem). To represent a problem accurately, students
must first understand the situation, including its key features. They then
need to generate a mathematical representation of the problem that captures
the core mathematical elements and ignores the irrelevant features. This
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step may be facilitated by making a drawing, writing an equation, or creating
some other tangible representation. Consider the following two-step problem:

At ARCO, gas sells for $1.13 per gallon.
This is 5 cents less per gallon than gas at Chevron.
How much does 5 gallons of gas cost at Chevron?

In a common superficial method for representing this problem, students fo-
cus on the numbers in the problem and use so-called keywords to cue appro-
priate arithmetic operations.?* For example, the quantities $7.83 and 5 cents
are followed by the keyword /Zess, suggesting that the student should subtract
5 cents from $1.13 to get $1.08. Then the keywords Zow much and 5 gallons
suggest that 5 should be multiplied by the result, yielding $5.40.

In contrast, a more proficient approach is to construct a problem model—
that is, a mental model of the situation described in the problem. A problem
maodel is not a visual picture per se; rather, it is any form of mental represen-
tation that maintains the structural relations among the variables in the
problem. One way to understand the first two sentences, for example, might
be for a student to envision a number line and locate each cost per gallon on
it to solve the problem.

In building a problem model, students need to be alert to the quantities
in the problem. It is particularly important that students represent the quan-
tities mentally, distinguishing what is known from whatis to be found. Analy-
ses of students’ eye fixations reveal that successful solvers of the two-step
problem above are likely to focus on terms such as ARCO, Chevron, and #his,
the principal known and unknown quantities in the problem. Less success-
ful problem solvers tend to focus on specific numbers and keywords such as
$1.13, 5 cents, less, and 5 gallons rather than the relationships among the
quantities.”

Not only do students need to be able to build representations of indi-
vidual situations, but they also need to see that some representations share
common mathematical structures. Novice problem solvers are inclined to
notice similarities in surface features of problems, such as the characters or
scenarios described in the problem. More expert problem solvers focus more
on the structural relationships within problems, relationships that provide
the clues for how problems might be solved.” For example, one problem
might ask students to determine how many different stacks of five blocks can
be made using red and green blocks, and another might ask how many differ-
ent ways hamburgers can be ordered with or without each of the following:
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catsup, onions, pickles, lettuce, and tomato. Novices would see these prob-
lems as unrelated; experts would see both as involving five choices between
two things: red and green, or with and without.”

In becoming proficient problem solvers, students learn how to form mental
representations of problems, detect mathematical relationships, and devise
novel solution methods when needed. A fundamental characteristic needed
throughout the problem-solving process is flexibility. Flexibility develops
through the broadening of knowledge required for solving nonroutine prob-
lems rather than just routine problems.

Routine problems are problems that the learner knows how to solve based
on past experience,”® When confronted with a routine problem, the learner
knows a correct solution method and is able to apply it. Routine problems
require reproductive thinking; the learner needs only to reproduce and apply
a known solution procedure. For example, finding the product of 567 and 46
is a routine problem for most adults because they know what to do and how
to do it.

In contrast, nonroutine problems are problems for which the learner does
not immediately know a usable solution method. Nonroutine problems
require productive thinking because the learner needs to invent a way to
understand and solve the problem. For example, for most adults a nonroutine
problem of the sort often found in newspaper or magazine puzzle columns is
the following:

A eycte shop has a total of 36 bicycles and tricycles in stock.
Collectively there are 80 wheels.
Hosw many bikes and how many tricycles are there?

One solution approach is to reason that all 36 have at least two wheels for a
total of 36 x 2 = 72 wheels. Since there are 80 wheels in all, the eight addi-
tional wheels (80 — 72) must belong to 8 tricycles. So there are 36 - 8 = 28
bikes.

A less sophisticated approach would be to “guess and check”: If there
were 20 bikes and 16 tricycles, that would give (20x 2) + (16 x 3) = 88 wheels,
which is too many. Reducing the number of tricycles, a guess of 24 bikes and
12 tricycles gives (24 x 2) + (12 x 3) = 84 wheels—still too many. Another
reduction of the number of tricycles by 4 gives 28 bikes, 8 tricycles, and the
80 wheels needed.

A more sophisticated, algebraic approach would be to let 4 be the num-
ber of bikes and 7 the number of tricycles. Then & + 7= 36 and 24 + 37 = 80.
The solution to this system of equations also yields 28 bikes and 8 tricycles.
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A student with strategic competence could not only come up with sev-
eral approaches to a nonroutine problem such as this one but could also choose
flexibly among reasoning, guess-and-check, algebraic, or other methods to
suit the demands presented by the problem and the situation in which it was
posed.
Flexibility of approach is the major cognitive requirement for solving
nonroutine problems. It can be seen when a method is created or adjusted to
fir the requirements of a novel situation, such as being able to use general
principles about proportions to determine the best buy. For example, when
the choice is between a 4-ounce can of peanuts for 45 cents and a 10-ounce
can for 90 cents, most people use a ratio strategy: the larger can costs twice as
much as the smaller can but contains more than twice as many ounces, so it is
a better buy. When the choice is between a 14-ounce jar of sauce for 79 cents
and an 18-ounce jar for 81 cents, most people use a difference strategy: the
larger jar costs just 2 cents more but gets you 4 more ounces, so it is the better
buy. When the choice is between a 3-ounce bag of sunflower seeds for 30
cents and a 4-ounce bag for 44 cents, the most common strategy is unit-cost:
The smaller bag costs 10 cents per ounce, whereas the larger costs 11 cenrs
per ounce, so the smaller one is the better buy. There are
There are mutually supportive relations between strategic competence mutually
and both conceprual understanding and procedural fluency, as the various  supportive
approaches to the cycle shop problem illustrate. The development of strate-  relations

gies for solving nonroutine problems depends on understanding the quanti- btetweep
s : 5 ; ; ) . strategic
ries involved in the problems and their relationships as well as on fluency in competence

solving routine problems. Similarly, developing competence in solving  gnd both

nonroutine problems provides a context and motivation for learning to solve  conceptual

routine problems and for understanding concepts such as given, unknown, con- understanding

dition, and solution. and

; . . . procedural
Strategic competence comes into play at every step in developing proce-  fyency,

dural fluency in computation. As students learn how to carry out an opera-

tion such as two-digit subtraction (for example, 86 —59), they typically progress

from conceptually transparent and effortful procedures to compact and more

efficient ones (as discussed in detail in chapter 6). For example, an initial

procedure for 86 — 59 might be to use bundles of sticks (see Box 4-3). A

compact procedure involves applying a written numerical algorithm that carries

out the same steps without the bundles of sticks. Part of developing strategic

competence involves learning to replace by more concise and efficient proce-

dures those cumbersome procedures that mighre ar first have been helpful in

understanding the operation.
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Box 4-3

Subtraction Using Sticks: Modeling 86 - 59 = 7

@ B6=80+6
Break apart a bundle
ﬂ 86 = (70 + 16)

T
@ i [ =
ﬁ

==
==
==
==

Remove 50 Remove 9

20+7

i
il
B
)

27 remain

Begin with 8 bundles of 10 sticks along with 6 individual sticks. Because you
cannot take away 9 individual sticks, open one bundle, creating 7 bundles of 10
sticks and 16 individual sticks. Take away 5 of the bundles (corresponding to
subtracting 50), and take away 9 individual sticks (corresponding to subtracting
9). The number of remaining sticks—2 bundles and 7 individual sticks, or 27—is
the answer.
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Students develop procedural fluency as they use their strategic compe-
tence to choose among effective procedures. They also learn that solving
challenging mathematics problems depends on the ability to carry out proce-
dures readily and, conversely, that problem-solving experience helps them
acquire new concepts and skills. Interestingly, very young children use a
variety of strategies to solve problems and will tend to select strategies that
are well suited to particular problems.? They thereby show the rudiments of
adaptive reasoning, the next strand to be discussed.

Adaptive Reasoning

Adaptive reasoning refers to the capacity to think logically about the rela-  Adaptive
tionships among concepts and situations. Such reasoning is correct and valid, ~reasoning
stems from careful consideration of alternatives, and includes knowledge of 23?;;:3 the
how to justify the conclusions. In mathematics, adaptive reasoning is the 4 hink
glue that holds everything together, the lodestar that guides learning. One  |ogically
uses it to navigate through the many facts, procedures, concepts, and solution ~ about the
methods and to see that they all fit together in some way, that they make elationships
sense. In mathematics, deductive reasoning is used to settle disputes and 22?_&2%“ s
disagreements. Answers are right because they follow from some agreed-  gjtyations.
upon assumptions through series of logical steps. Students who disagree about
a mathematical answer need not rely on checking with the teacher, collecting
opinions from their classmates, or gathering data from outside the classroom.

In principle, they need only check that their reasoning is valid.

Many conceptions of mathematical reasoning have been confined to for-
mal proof and other forms of deductive reasoning. Our notion of adaptive
reasoning is much broader, including not only informal explanation and justi-
fication but also intuitive and inductive reasoning based on pattern, analogy,
and metaphor. As one researcher putit, “The human ability to find analogical
correspondences is a powerful reasoning mechanism.” Analogical reason-
ing, metaphors, and mental and physical representations are “tools to think
with,” often serving as sources of hypotheses, sources of problem-solving
operations and techniques, and aids to learning and transfer.”!

Some researchers have concluded that children’s reasoning ability is quite
limited until they are about 12 years old.*? Yet when asked to talk about how
they arrived at their solutions to problems, children as young as 4 and 5 dis-
play evidence of encoding and inference and are resistant to counter sugges-
tion.® With the help of representation-building experiences, children can
demonstrate sophisticated reasoning abilities. After working in pairs and
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