

Session 5 Slides

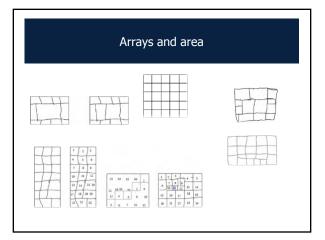
Overview of Session 5

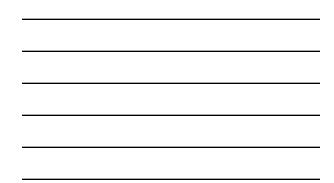
- Discussing what you learned about student thinking from the CCA assessment task(s)
- Unpacking the Developmental Progression of the Learning Trajectory for area by watching students measure
- Classroom Connection Activity

CCA – Focal tasks from last time

- Piagetian conservation tasks
- Arrays and area
 - Copy an array
 - Fill in an incomplete array (what processes?)

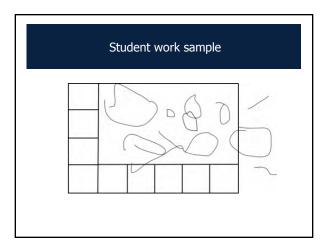
CCAs – What did you find?

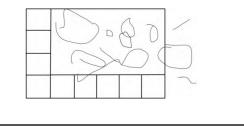

In groups of 2-4, discuss your students' responses to the two area tasks.


Think about:

- What mathematics do they know?
- How do they think about the math?
- What differences did you notice?

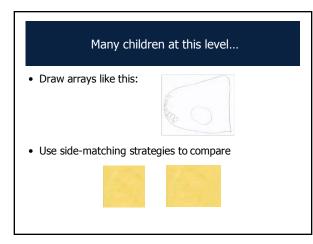
Students' thinking


What started our investigations?

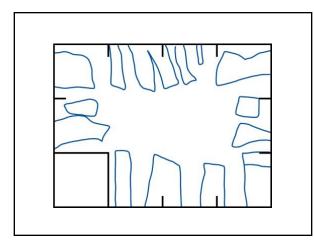


l	_earning trajecto	ries approach	n
• Goal			
Developm	ental Progression		
Instruction	1		
Mathematical Goal	Developmental Path	Set of Activities	Learning Trajectory

Before the first level... Pre-Area Quantity Recognizer (PAQR)

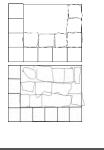

- Little specific concept of area
- Draws in and out of boundary

What characteristics?



Area Quantity Recognizer (AQR)

- Little specific concept of area
- Uses side matching strategies in comparing areas
 (Silverman, York, & Zuidema, 1984)
- May draw approximation of circles or other figures in a rectangular tiling task


How about this level?

Physical Coverer and Counter (PCC)

Attends to some aspects of the structure

- Tiling. Completely covers a region with physical tiles
- Comparing. Makes intuitive comparisons of 2D regions based on simple, direct comparisons (superimposition)
- Drawing. Approximate rectangular shapes, some gaps

Complete Coverer and Counter (CCC)
Drawing. Draws a complete covering without gaps or overlaps and in approximations of rOWS (errors of alignment and not all shapes equal size)
Producing. Can build a region of specified area

	kample	0	uuc	2				
He was unsystematic in his counting of individual shapes, yet he demonstrated an explicit understanding that the entire region needed to be covered.	1	19	20	34	40 39	41	43 44	46 45
		_		33	38	37	36	35
	2	18	21	32	31	30	29	28
	34	17	22	23	24	25	26	27
	5	8	16	1	15	14		13
	6	7	9	1	10	n		12

Learning trajectory levels - Area

- Pre-Area Quantity Recognizer
- Area Quantity Recognizer
- Physical Coverer and Counter
- Complete Coverer and Counter

What about more advanced levels?

Let's watch a new example...

Area Unit Relater and Repeater (AURR) (Part 1)

- Quantifying. Counts individual units, guided by rows
- **Drawing**. Draws a complete covering, one unit at at time, using an intuitive row or column structure and equal-size units
- Comparing. Relates size and number of units

Area Unit Relater and Repeater (AURR) (Part 2)

- Iterating. Iterates individual tiles to measure
- **Producing**. Builds a region of area from an insufficient number of unit tiles through individual unit iteration

What characterizes this level?

Initial Composite Structurer (ICS)

- Identifies a square unit as both a unit and a component of a unit of units (a row, column, or group)
- Two sub-levels...this video represents the "A" sub-level

Initial Composite Structurer (ICS) A: Operating on groups of units

- Organizes counting, drawing, or moving of objects in composite units (unit of units)
- Finds reasonable estimates of regions (may use upper or lower bounds)

Initial Composite Structurer (ICS) B: What's different?

Initial Composite Structurer (ICS) B: Coordinating and relating dimension

- Uses dimension displays as indicating the number of units in a row or column
- May identify dimensions of a region without correctly drawing the array of units

How about this level?

Area Row and Column Structurer (RCS)

- Decomposes/recomposes partial units to make whole units
- Drawing/visualizing. Uses given or measured dimensions to place both row and column line segments and create units

What characterizes this level?

Array Structurer (AS)

• With linear measures or other similar indications of the two dimensions, multiplicatively iterates squares in a row or column to determine the area

• Drawing not necessary

Test ourselves!

To develop understanding of the developmental progression, we will:

- Watch video examples
- Take notes in a form similar to the one we used last time, recording
 - what the student does
 - the level of thinking from the learning trajectory
- Think-Pair-Share
- Check!

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Taking notes to support identifying a learning trajectory level

Individually

- Describe what the child did in your notes
- Identify the level of the area learning trajectory that fits the description

<u>In pairs</u>

- Discuss what you noticed and the level you selected
- How did the notes help identify levels?

Physical Coverer and Counter (PCC)

Taking notes to support identifying a learning trajectory level

Individually

- Describe what the child did in your notes
- Identify the level of the area learning trajectory that fits the description

<u>In pairs</u>

- Discuss what you noticed and the level you selected
- How did the notes help identify levels?

Area Unit Relater and Repeater (AURR)

Taking notes to support identifying a learning trajectory level

Individually

- Describe what the child did in your notes
- Identify the level of the area learning trajectory that fits the description

In pairs

- Discuss what you noticed and the level you selected
- How did the notes help identify levels?

Area Quantity Recognizer (AQR)

Taking notes to support identifying a learning trajectory level

Individually

- Describe what the child did in your notes
- Identify the level of the area learning trajectory that fits the description

<u>In pairs</u>

- Discuss what you noticed and the level you selected
- How did the notes help identify levels?

Physical Coverer and Counter (PCC)

Taking notes to support identifying a learning trajectory level

Individually

- Describe what the child did in your notes
- Identify the level of the area learning trajectory that fits the description

<u>In pairs</u>

- Discuss what you noticed and the level you selected
- How did the notes help identify levels?

Initial Composite Structurer (ICS) B: Coordinating and Relating Dimension

Taking notes to support identifying a learning trajectory level

Individually

- Describe what the child did in your notes
- Identify the level of the area learning trajectory that fits the description

In pairs

- Discuss what you noticed and the level you selected
- How did the notes help identify levels?

Session 5 CCAs

- Select assessment tasks to use with your students and take notes on what they do
- Bring in a curriculum lesson or activity on area

Summary

In this session you:

- Analyzed examples of student engagement in measurement in terms of the learning trajectory for area measurement
- Used note taking to describe student work and student thinking before trying to interpret what the student was doing