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Math Notes: Justifying Geometry Statements 

 

Being able to justify whether a mathematical statement is true or false is an important part of the work 
of mathematics that students can engage in throughout the grade levels and across many mathematical 

topic areas. Justifying statements in mathematics may require: 

• Using definitions, postulates, and theorems  

• Using logic statements 

• Identifying “hidden” or assumed quantifiers 

Although students at different grade levels express their justifications differently, at all grade levels, 
students can learn to justify statements in ways that are appropriate and convincing for the 
mathematical communities in their classrooms. As students create justifications for mathematical 

statements, they have opportunities to learn to engage in several mathematical practices. 

 

Using definitions, postulates, and theorems 

To determine whether a mathematics statement is true or false, one needs to start with what is known 

about the object(s) under discussion. Three types of ideas form the basis of what a mathematical 
community knows about an object. They are: 

• definitions (explain the meaning of a term that is agreed upon in a given community);  

• postulates (ideas that the community assumes to be true without proving the ideas);  

• and theorems (ideas that have been proven in the community). 

When justifying mathematical statements, it is important to start by stating what the community knows 
about the object under discussion. What is known may change from classroom to classroom and from 

grade level to grade level, depending on what particular classroom communities have previously 
discussed and worked on. As students progress through the grades, definitions become more general 
and postulates may become theorems. To determine whether a statement is true or false, one must 
build a chain of reasoning to justify the conclusions that are being made. This chain of reasoning starts 

with the definition of the object and states how the definition relates to the statement under discussion. 
Then, relevant postulates and theorems about that object are applied, which lead to the conclusions 
that are being made. 

Consider the statement, “Any parallelogram with at least one right angle is a rectangle.” The illustration 
below shows an example that corresponds with the statement.  

 

To prove whether the statement is true or false, the following process could be used: 

Step 1: Stating the definitions of the mathematical objects (i.e., parallelogram and rectangle) included 

in the statement: 

Parallelogram: A 4-sided polygon whose opposite sides are parallel. The opposites sides of a 
parallelogram are the same length. Adjacent angles in a parallelogram have a sum of 180 degrees. 

B C 
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Rectangle: A parallelogram with four right angles. 

Step 2: Using a chain of reasoning to build a justification for the statement that a parallelogram with at 

least one right angle has to have four right angles making it a rectangle.  

1) We are told in the initial statement that the parallelogram has one right angle. Angle A is that 
right angle (and has a measure of 90 degrees as a result). 

2) Angles A and B are adjacent angles along side AB. Based on the given definition of a 
parallelogram, Angle B must be a right angle because adjacent angles in a parallelogram have a 
sum of 180 degrees. 

3) Similarly because Angles A and D are adjacent angles along side AD, Angle D is also a right 

angle.  

4) Therefore, the remaining angle, Angle C must also have a measure of 90 degrees because both 
Angles B and D are adjacent with it. 

5) Conclusion: Given a parallelogram with one right angle, the other three angles must also be 
right angles. This makes the parallelogram a rectangle because a rectangle, by definition, is 
a parallelogram with four right angles. Therefore, the given statement is true. 

By following this type of process and ensuring that each step in the chain of reasoning follows from the 

previous statement, and employs information that is available to members of a particular mathematical 
community, valid justifications for statements can be constructed.  

  



 

 
Supporting Reasoning and Explanations in Elementary Mathematics Teaching 

Session 8 Resource 
 

This work is licensed under a Creative Commons Attribution-Noncommercial-4.0 International License: 

https://creativecommons.org/licenses/by-nc/4.0/ © 2018 Mathematics Teaching and Learning to Teach  
School of Education • University of Michigan • Ann Arbor, MI 48109-1259 • mtlt@umich.edu 

page 3 of 5 

Interpreting mathematical statements 

Mathematical statements can take many different forms, including “if-then” statements. Because 

statements can be written in many other forms, the implications of the statements are not always be 
clear. Sometimes, rewording statements as “if-then" statements can help make the underlying logic of 
the statement clearer. This can strengthen justifications of mathematical arguments. For example, 

simple declarative statements can be written as "if-then” statements to surface important relationships 
that might otherwise be overlooked. 

For every declarative statement, there are three accompanying statements, the converse, the inverse, 
and the contrapositive. The table below includes the four types of related logic statements written both 

in simple declarative form and “if-then” form. The table is followed by an elaboration of the logic of 
each kind of statement. 

Types of statements Example statements Examples of conditional “if then” form 

Initial statement A square parallelogram. If a shape is a square, then it is a 
parallelogram. 

(If p, then q.) 

Converse A parallelogram is a square. If a shape is a parallelogram, 

then it is a square. 

(If q, then p.) 

Inverse A shape that is not a square is not 
a parallelogram. 

If a shape is not a square, then it 
is not a parallelogram. 

(If not p, then not q.) 

Contrapositive A shape that is not a parallelogram 
is not a square. 

If a shape is not a parallelogram, it 
is not a square. 

(If not q, then not p.) 

Converse. Converses are created by switching the hypothesis and the conclusion of a declarative 
statement. If a statement is true, the converse of the statement is not necessarily true. For example, 
although the statement "If something is a cat, then it is an animal" is true, the converse of the 

statement "If something is an animal, then it is a cat" is not necessarily true. In the table above, the 
converse of the statement "A square is a parallelogram" is "A parallelogram is a square", which is not 
true in all cases. A common error in reasoning is to assume that if a statement is true, then the 

converse of the statement must also be true. 

Contrapositive. Contrapositives are created by switching the hypothesis and the conclusion of a 
statement and then negating both. For example, the statement "If something is a cat, then it is an 
animal" as a contrapositive would be written as "If something is not an animal, then it is not a cat." If a 

statement is true, then the contrapositive of the statement is also true. 

Inverse. Inverses are created by negating both the hypothesis and the conclusion of a statement. For 
example, the inverse of the statement “If something is an animal, then it is a dog” is “If something is 

not an animal, then it is not a dog”. If a statement is false, the inverse of the statement is not 
necessarily false. In the example, the given statement is false, but the inverse happens to be true. If 
the converse of a statement is true, then its inverse is also true. For example, the declarative statement 
"If something is an animal, then it is a dog" is not true. However, both the statement's converse (“If 

something is a dog, then it is an animal”) and the statement’s inverse (“If something is not an animal, 
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then it is not a dog”) are true. Interestingly, the inverse is the contrapositive of the conve rse of a 
declarative statement. 

Rewording statements in the “if-then" form and then considering the relationships between statements 
(e.g., initial statement, converse, inverse, contrapositive) can help clarify whether a mathematical 
statement is true or provide direction for how one might go about determining the truth of the 

statement. 

 

Identifying “hidden” or assumed quantifiers 

Another concern in mathematical reasoning is recognizing the scope of cases under consideration in a 

particular statement. Mathematical statements often use (or imply) quantifiers to signal whether they 
are referring to particular cases, some cases, all cases, or no cases. There are many different ways to 
express these ideas. The table below shows examples of statements that use different types of 

quantifiers and also indicates different ways of expressing each quantifier. 

Type of quantifier Mathematical statement using 
the quantifier 

Different ways to express the 
quantifier 

All cases The sum of the interior angles of 

all triangles is 180 degrees. 

Every 

Whenever 

Always 

Particular cases The interior angles of an 
equilateral triangle each have a 

measure of 60 degrees 

At least one is 

There exists a 

For some, you can find a 

Some cases Some triangles are isosceles. At least one is  

There exists a 

For some, you can find a 

No cases No triangle has four sides. No 

There does not exist  

For none 

Never 

Attempting to prove the statement “All polygons with four connected sides are quadrilaterals” often 
prompts discussions of quantifiers. What does four mean? Does it mean at least four, exactly four, or 

no more than four? Is a pentagon a quadrilateral because it has five straight connected sides, meaning 
it has at least four straight connected sides? There also could be a discussion of what connected to 
means. Does it mean that the four sides need to be connected only to each other or can there be an 
additional side that completes the connection? Does connected imply crossing at the end points o r 

could they cross anywhere? 

These questions do not have universal answers. Instead, each community that is discussing this 
statement must clarify what they mean by the particular words in the statement. Coming to a 

consensus about the meaning of terms and “hidden” quantifiers will ultimately determine whether the 
statement under consideration is true or false. 
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What mathematical practices are particularly relevant when justifying 
mathematical statements? 

As students practice creating justifications for mathematical statements, they have opportunities to 
learn to engage in several of the mathematical practices including, but not limited to:  

MP 1. Make sense of problems and persevere in solving them. 

As students determine whether a particular statement is true or false, they must first make sense 
of the statement and then work to build a convincing mathematical justification for that 
statement. 

MP 3. Construct viable arguments and critique the reasoning of others. 

When students build a justification for a statement in the context of a classroom community, they 
must ensure that their justification seems viable to others in their community. Likewise, as 
students listen to others in the classroom community present justifications, they have 

opportunities to critique these justifications and to judge whether or not they are convincing.  

MP 6. Attend to precision. 

Students may raise questions about implied quantifiers or they may interpret the meaning of 
quantifiers quite differently from their classmates making it difficult to work collectively on 

mathematics. Discussions provide opportunities to determine the nature of the precision of 
language required by the community. Agreements can be made about how the community 
chooses to use numbers in statements (e.g., four means exactly four). A community might also 
agree that statements must be modified so that they explicitly include quantifiers before a 

conclusion can be proven true or false. It is key that subsequent work reflect the precision 
required by community agreements. 

 


